tutorial

Publicado por

F2000ersit-former>>ChristianIGermanDisHoywodertoHeinzWFriteOctobFogicmanProgramsoninersionsFloridARainerTaulhutorialhlepphorstforFLORtheatDatabasereiburgLanguageyFogicerVThisersionual3.0basedloXMLtheWvolfgangbMaJyurgenmaynformatiknireirohnburHimmergePInstitutKandziafScandurUphoInformatikUniv...2.Con.ten.ts.1.In.troersionduction.4.2.A29First.Example.4.3.Ob.jects.and.theirBasePropClosureertiesSignatures6.3.1andOb.ject.Names6.6and.V7ariable.Names..7.2...................Equalit...............29..........6ath3.1.1.Metho.ds..18...........and.....19.........7.4.........7.5.........8.Prop.......Sub.....Closure....6.3.1.2MiscellaneousClass.Mem.b.ership.andProgramsSubtclass.Relationship......Stratiation.......31...vs..........8.3.2.ExpressingFInformationEqualitab.out.an.Ob.ject.Folecules..........tegers.............String..8.3.3.Beha.vioral.Inheritance........Con.......................................Ob.8.1.of.Predicate........9243.4ertiesSignaturesRelationships.........25.erties.............25.erties.......... ...
Publicado el : sábado, 24 de septiembre de 2011
Lectura(s) : 18
Número de páginas: 60
Ver más Ver menos

F
2000
ersit
-
former
>>
Christian
I
German
D
is
Ho
y
w
oder
to
Heinz
W
F
rite
Octob
Fogic
man
Programs
on
in
ersions
Florid

A
Rainer
T
aulh
utorial
hlepphorst
for
FLOR
the
at
Database
reiburg
Language
y
Fogic
er
V
This
ersion
ual
3.0
based
loXML
the
W
v
olfgang
b
Ma
J
y
urgen
maynformatiknirei
rohn
bur
Himmer
ge
P
Institut
Kandzia
f
Sc

and
ur
Upho
Informatik
Univ.
.
.
2
.
Con
.
ten
.
ts
.
1
.
In
.
tro
ersion
duction
.
4
.
2
.
A
29
First
.
Example
.
4
.
3
.
Ob
.
jects
.
and
.
their
Base
Prop
Closure
erties
Signatures
6
.
3.1
and
Ob
.
ject
.
Names
6.6
and
.
V
7
ariable
.
Names
.
.
7.2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Equalit
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
29
.
.
.
.
.
.
.
.
.
.
6
ath
3.1.1
.
Metho
.
ds
.
.
18
.
.
.
.
.
.
.
.
.
.
.
and
.
.
.
.
.
19
.
.
.
.
.
.
.
.
.
7.4
.
.
.
.
.
.
.
.
.
7.5
.
.
.
.
.
.
.
.
.
8
.
Prop
.
.
.
.
.
.
.
Sub
.
.
.
.
.
Closure
.
.
.
.
6
.
3.1.2
Miscellaneous
Class
.
Mem
.
b
.
ership
.
and
Programs
Sub
t
class
.
Relationship
.
.
.
.
.
.
Stratiation
.
.
.
.
.
.
.
31
.
.
.
vs
.
.
.
.
.
.
.
.
.
.
8
.
3.2
.
Expressing
F
Information
Equalit
ab
.
out
.
an
.
Ob
.
ject
.
Folecules
.
.
.
.
.
.
.
.
.
.
tegers
.
.
.
.
.
.
.
.
.
.
.
.
.
String
.
.
8
.
3.3
.
Beha
.
vioral
.
Inheritance
.
.
.
.
.
.
.
.
Con
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ob
.
8.1
.
of
.
Predicate
.
.
.
.
.
.
.
.
9
24
3.4
erties
Signatures
Relationships
.
.
.
.
.
.
.
.
.
25
.
erties
.
.
.
.
.
.
.
.
.
.
.
.
.
25
.
erties
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
9
.
26
.
Ev
.
Fixp
.
tics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Negation
.
.
.
.
.
.
9
.
3.5
.
Exploring
.
the
.
Database
11
.
.
.
.
.
17
.
Folecules
.
P
.
Expressions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
.
Builtn
.
eatures
.
7.1
.
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11
.
4
.
Nesting
.
Ob
.
ject
.
Prop
.
erties
.
11
.
4.1
.
Folecules
.
without
.
an
.
y
18
prop
In
erties
Comparisons
.
Arithmetics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7.3
.
handling
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
13
.
5
.
Predicate
.
Sym
.
b
.
ols
.
13
.
6
20
P
Data
ath
v
Expressions
.
13
.
6.1
.
Nesting
.
of
.
P
.
ath
.
Expressions
.
and
.
Folecules
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
21
.
Aggregation
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14
.
6.2
.
Ob
.
ject
.
Creation
.
with
.
Scalar
.
P
.
ath
.
Expressions
23
.
The
.
ject
.
24
.
Closure
.
erties
.
the
.
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8.2
15
Prop
6.3
of
P
class
ath
.
Expressions
.
in
.
Queries
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8.3
.
Prop
.
of
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8.4
.
Prop
.
.
.
.
.
.
.
.
16
.
6.4
.
Multi
.
alued
.
P
.
ath
.
Expressions
.
.
.
.
.
.
.
.
.
.
25
.
Rules
.
Queries
.
10
.
and
.
aluation
.
10.1
.
oin
.
Seman
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
16
.
6.5
.
P
.
ath
.
Expressions
10.2
with
and
Inheritable
.
Metho
.
ds
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
29
.
Inheritance
.
CONTENTS
..
Intionary
.
3
48
12
References
T
.
yp
.
e
.
c
.
hec
.
king
.
33
.
13
.
Querying
.
the
.
W
A
orld
.
Wide
.
W
.
eb
relationship
with
.
Florid
.
34
.
13.1
.
Mo
.
deling
.
the
.
W
.
eb
.
in
.
Fogic
Fogic
.
.
.
.
.
of
.
.
.
53
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Inheritance
.
.
.
.
.
.
.
47
.
.
.
.
.
.
.
Sp
.
.
.
.
.
.
.
.
.
Seman
.
.
34
.
13.2
.
T
51
ra
Bac
v
.
ersing
.
the
.
W
.
eb
.
A
.
First
.
Example
.
.
.
.
of
.
.
.
.
.
.
.
.
.
.
.
14.6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
46
.
Negation
.
.
.
.
.
.
.
.
35
.
13.3
.
P
.
arse
Negation
rees
tics
of
.
W
.
eb
.
do
.
cumen
.
ts
48
.
up
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
W
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Grammar
.
tax
.
orm
.
structure
.
.
.
.
.
.
.
.
36
.
14
.
Some
.
Example
.
Programs
A
41
syn
14.1
.
Rules
.
and
.
P
.
ath
.
Expressions
.
.
.
.
Syn
.
Expressions
.
CONTENTS
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
45
.
Subset
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
41
.
14.2
.
Generic
.
Metho
.
ds
14.7
.
and
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14.8
.
with
.
Seman
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14.9
.
eed
.
Inheritance
42
.
14.3
.
Using
.
Equalit
.
y
.
to
.
Ensure
.
Finiteness
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14.10
.
ellounded
.
tics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
43
.
14.4
.
Unin
.
tended
A
Equalit
of
y
Syn
.
in
.
kusaur
.
53
.
Lexical
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
53
.
Grammar
.
Fogic
.
tax
.
.
.
.
.
.
.
.
.
.
.
.
.
.
44
.
14.5
.
Negation
.
and
.
Stratiation
.
.
.
.
.
.
B
.
tax
.
Regular
.
55
.
59
.
.king
this
incorp
INTR
floridnformatiknire
ODUCTION
with
4
t
1
89
In
mo
tro
b
duction
do
Fogic
pril
L
ersion
W
,
]
description
is
in
a
nononotonic
deductiv
and
e
of
ob
2.0
ject
in
orien
v
ted
e
database
tly
language
completed
whic
of
h
ob
com
the
bines
commen
the
Before
declar
impression
ativ
1
e
yp
seman
ered
tics
14,
and
illustrate
expressiv
more
eness
jor
of
access
deductiv
usage
e
2.1
database
mo
languages
compilation
with
handling
the
and
ric
impro
h
the
data
ort
mo
that
d
with
elling
databases
capabilities
and
supp
database
orted
refer
b
M
y
commands
the
bug
ob
2
ject
tax
orien
giv
ted
follo
data
ersons
mo
of
del
and
In
c
v
co
ersion
Sections
1.0
In
(1996)
n
Florid
of
implemen
ecial
ted
and
the
to
basic
a
features
feature
of
pro
Fogic
W
The
ts
theoretical
describ
foundations
13.
of
2.2
Fogic
sev
ha
and
v
ts
e
Florid
b
st
een
ha
describ
een
ed
memory
in
b
the
ed
Fogic
Un
rep
t
ort
XML
L
b
W
e
]
reader
and
is
LU
basic
].
tiv
The
Datalog
presen
Ull
t
principles
tutorial
orien
describ
BD
es
W
ho
reader
w
man
to
for
apply
Florid
Fogic
send
in
suggestions
the
orts
Florid
g
system
First
Therefore
the
this
seman
tutorial
w
explains
a
the
Fogic
v
Fogic
arious
biblical
features
their
of
t
Fogic
negation
b
inheritance
y
t
example
e
and
hec
sho
are
ws
v
ho
in
w
10
to
12.
use
Section
them
a
for
um
t
er
ypical
examples
database
sp
problems
features
Section
Florid
2
or
giv
material
es
start
a
As
st
ma
impression
new
of
Florid
ho
(1998)
w
vided
Fogic
to
programs
eb
lo
cumen
ok
Its
lik
is
e
ed
The
Section
same
Florid
simple
and
mo
(1999)
del
orated
w
eral
orld
diations
tak
impro
en
emen
from
concerning
the
In
Old
2.5
T
2000),
estamen
XML
t
features
also
v
serv
b
es
added
as
the
a
managen
bac
has
kground
een
database
v
throughout
signian
the
.
tutorial
til
The
curren
follo
v
wing
2.82,
Sections
supp
3
has
to
een
8
W
fo
assume
cus
the
on
of
data
tutorial
mo
familiar
deling
the
and
concepts
presen
deduc
t
e
the
e
language
HV
concepts
CGT
of
],
Fogic
the
relev
of
an
ject
t
ted
for
systems
Florid
+
.
].
In
e
order
the
to
to
write
user
programs
ual
in
]
Florid
a
,
of
the
system
reader
Please
also
enquiries
has
ts
to
and
b
rep
e
to
a
ibur
w
e
are
A
of
Example
ho
explaining
w
syn
Florid
and
implemen
tics
ts
detail
some
e
more
e
diult
st
p
of
oin
The
ts
wing
Questions
program
regarding
dels
safet
p
y
and
of
relationships
rules
treatmenthe
a
the
A
program
FIRST
and
EXAMPLE
the
5
The
%
sons
facts
and
abrahaman
2
sarahoman
the
isaacanather
\
>
and
abraham
expression
mother
of
>
simple
sarah
ailable
ishmaelanather
eral
>
commen
abraham
base
mother
d
>
and
hagaroman
,
jacobanather
other
>
ercase
isaac
with
mother
a
>
command
rebekahoman
]).
esauanather
asks
>
could
isaac
Y
mother
the
>
text
rebekah
if
/*
"
rules
mark
consisting
are
of
to
a
infor
rule
and
head
is
and
\
a
enclosing
rule
and
body
the
*/
As
Xon
ob
>
with
>
rah
f
in
Y
letter
g
Example
]
ob
:-
"
Yanather
ev
>
user
X
ws
Xon
metho
>
w
>
Abraham
f
as
Y
oman
g
>
]
e
:-
t
Yanother
in
>
een
X
is
Xaughter
o
>
b
>
\
f
E
Y
a
g
ds
]
Sections
:-
are
Yomanather
ob
>
in
X
Note
Xaughter
ds
>
are
>
whic
f
b
Y
arro
g
>>
]
curly
:-
result
Yomanother
ds
>
are
X
b
//
arro
query
>
?-
wn
sysval
database
//
names
This
b
is
lo
a
e
system
man
command
ariable
?-
b
Xomanon
upp
>
X
>
part
f
con
Yather
to
>
base
abraham
?-
g
a
].
start
(2.1)
of
The
also
st
ual
part
query
of
abilit
this
to
example
applications
consists
out
of
and
a
father
set
same
of
e
facts
conjunction
whic
?-
h
>>
express
],
that
raham
some
o
p
sho
ersons
t
b
a
elong
Fogic
to
and
the
et
classes
/*
man
*/
and
ev
w
is
oman
er
,
The
resp
\
ectiv
yle
ely
"
,
A
and
st
giv
rest
e
as
information
1
ab
classes
out
jects
the
and
father
,
and
added
mother
the
relationships
ject
b
as
et
tensional
w
mation
een
that
some
metho
of
son
these
daughter
p
multialue
ersons
,
According
h
to
indicated
the
y
ob
doubleeaded
jectrien
w
ted
-
paradigm
"
relationships
the
b
braces
et
the
w
whereas
een
metho
ob
father
jects
mother
are
functional
mo
indicated
deled
y
b
simple
y
w
metho
-
d
".
applications
kno
e
from
applying
logical
the
languages
metho
ject
d
alw
father
ys
on
egin
the
a
ob
w
ject
letter
isaac
sa
yields
mother
the
1
result
v
ob
names
ject
general
ab
egin
raham
an
.
ercase
All
e
these
.
facts
third
ma
of
y
(2.1)
b
tains
e
query
considered
the
as
ject
the
The
extensional
\
database
sysval
of
is
the
system
Fogic
to
program
the
Hence
aluation
they
the
form
ee
the
the
framew
man
ork
M
of
The
an
sho
ob
the
ject
y
base
Fogic
whic
nest
h
d
is
It
completed
ab
b
all
y
omen
some
their
closure
whose
prop
is
erties
The
F
question
or
b
more
written
details
a
ab
of
out
subgoals
an
X
ob
Xon
ject
f
base
g
see
Yather
Section
ab
8.
Also
The
ab
rules
v
in
program
the
ws
second
diren
part
commen
of
formats
Example
v
(2.1)
in
deriv
As
e
C
new
C
information
b
from
w
the
\
giv
"
en
\
ob
"
ject
ignored
base
en
Ev
it
aluating
ranging
these
v
rules
sev
in
lines
a
sym
b
ols
ottomp
//
w
t
a
or
y
%
,
rolog
new
L
relationships
T
b
X
et
yle
w
the
een
of
the
line
ob
a
jects
t
denoted
Metho
b
and
y
also
the
ob
metho
see
ds
3.1.1
son
3.1.2.
and
daughtere
function
seman
OBJECTS
a
AND
>
THEIR
out
PR
gr
OPER
osition
TIES
erson
6
".
3
\
Ob
enclosed
jects
raham
and
an
their
y
Prop
ject
erties
queries
As
sc
w
ob
e
the
ha
of
v
has
e
former
already
iderms
seen
b
in
con
Example
Fogic
(2.1)
whic
obje
denoted
cts
ject
are
metho
the
raham
basic
ositions
constructs
?-
of
d
Fogic
y
Ob
son
jects
double
mo
d
del
ject
real
Multi
w
also
orld
do
en
base
tities
>
and
also
are
marks
in
e
ternally
other
represen
argumen
ted
.
b
ariable
y
3.1.1
obje
a
ct
expressed
identirs
a
whic
a
h
All
are
all
indep
or
enden
our
t
and
of
e
their
ma
prop
used
erties
whic
According
d
to
As
the
one
principles
as
of
d
ob
arro
ject
trast
orien
in
ted
indicated
systems
\
these
ds
ob
the
ject
is
iden
e
tirs
Sets
are
The
in
alued
visible
empt
to
fg
the
essarily
user
Since
T
tain
o
sons
access
g
an
,
ob
ery
ject
y
directly
.
the
y
user
b
has
ols
to
ma
kno
used
w
e
its
rah
obje
iderm
ct
no
name
called
.
iderm
Ev
ds
ery
application
ob
d
ject
ject
name
y
refers
consist
to
ob
exactly
d
one
ob
ob
y
ject
jects
Ho
ccur
w
host
ev
p
er
d
an
us
ob
3.2
ject
names
ma
are
y
just
b
and
e
V
denoted
also
b
b
y
all
more
a
than
allo
one
out
ob
lik
ject
>
name
ery
as
at
w
the
e
is
will
functional
see
)
in
ted
Section
single
7.1.
\
F
In
ollo
metho
wing
y
the
than
ob
this
ject
y
orien
arro
ted
>
paradigm
h
ob
called
jects
Note
ma
consisting
y
ob
b
an
e
us
organized
e
in
Empt
classes
Result
.
Metho
F
p
urthermore
m
metho
ma
ds
of
represen
set
t
>
relationships
".
b
not
et
that
w
zero
een
ob
ob
y
jects
information
Suc
ha
h
\
information
f
ab
",
out
3
ob
and
jects
ev
is
string
expressed
b
b
quotation
y
""
Ftoms
Complex
.
ma
3.1
b
Ob
created
ject
y
Names
symb
and
where
V
iderms
ariable
y
Names
e
Ob
as
ject
ts
names
coupleb
and
sa
v
f
ariable
An
names
that
are
tains
also
v
called
is
iderms
a
and
ound
are
.
the
Metho
basic
In
syn
the
tactical
of
ele
metho
men
to
ts
ob
of
is
Fogic
b
T
datatoms
o
h
distinguish
of
ob
host
ject
ject
names
metho
from
and
v
result
ariable
ject
names
b
the
iderms
st
ob
alw
ma
a
o
ys
in
b
places
egin
ob
with
result
a
osition
lo
metho
w
p
ercase
Th
letter
in
whereas
Example
the
the
latter
d
alw
father
a
son
ys
ob
b
names
egin
lik
with
isaac
an
ab
upp
.
ercase
ariables
letter
y
or
b
an
used
under
e
score
at
f
p
Prolog
of
After
datatom
the
h
st
ws
letter
ab
ob
metho
ject
names
names
e
and
isaac
v
Y
ariable
ev
names
p
b
has
oth
most
ma
father
y
metho
con
father
tain
deed
upp
a
ercase
r
letters
alar
lo
metho
w
represen
ercase
b
letters
the
n
headed
umerals
w
or
-
the
".
underscore
con
sym
the
b
d
ol
ma
\
result
"
more
.
one
Examples
ject
for
is
ob
b
ject
the
names
headed
are
w
ab
-
raham
>
man
Suc
daughter
metho
,
are
for
multialue
v
.
ariable
that
names
set
are
of
X
result
Metho
jects
d
not
42
ob
.
th
There
w
are
preserv
t
strder
w
tics
o
y
sp
as
ecial
of
t
alued
yp
ds
es
result
of
osition
ob
a
ject
ulti
names
datatom
that
y
carry
consist
additional
the
information
y
in
e
tegers
isaacon
and
>
strings
].
Ev
This
ery
es
p
nec
ositiv
mean
e
isaac
or
indeed
negativ
sons
e
the
in
ject
teger
ma
ma
con
y
other
b
ab
e
Isaac
used
ving
as
e
an
isaacon
ob
>
ject
jacob
name
].
e
the
+3,
datatom
3,
-3er
sons
a
OBJECTS
a
AND
used
THEIR
ject
PR
individual
OPER
ob
TIES
fg
7
also
expresses
result
that
base
Isaac
Xsau
has
query
at
is
least
the
zero
f
sons
(3.1)
This
er
can
Fogic
b
metho
e
of
view
this
ed
sons
as
to
a
ma
kind
ob
of
g
declaration
result
of
these
the
additional
metho
all
d
jacob
son
f
for
benjamin
the
metho
ob
t
ject
soalled
isaac
supp
.
alued
Metho
a
ds
v
with
h
P
application
arameters
p
Sometimes
en
the
Example
result
all
of
>
the
isaacon
in
ariables
v
e
o
er
cation
ab
of
return
a
of
metho
ound
d
w
on
k
a
in
host
ma
ob
in
ject
ab
dep
queries
ends
isaacon
on
?-
other
?-
ob
?-
jects
sonrachel
to
In
o
(3.2)
F
son
or
a
example
um
Jacob
parameters
sons
ading
are
3.4)
b
b
orn
with
b
ds
y
con
diren
ulti
t
with
w
at
omen
osition
T
ob
o
metho
express
the
this
is
the
binding
metho
ariable
d
ob
son
ed
is
questioning
extended
Isaac
b
kno
y
isaacon
a
Answ
p
:
ar
X
ameter
that
denoting
a
the
only
corresp
ound
onding
jects
mother
sets
of
i
eac
v
h
es
of
f
Jacob
In
sons
query
Lik
of
e
at
metho
osition
ds
er
parameters
c
are
whether
ob
are
jects
corresp
as
base
w
b
ell
ob
denoted
database
b
ject
y
v
iderms
follo
Syn
the
tactically
.
a
>
parameter
g
list
>
is
g
alw
>
a
g
ys
>
included
3
in
>
paren
(3.2)
theses
Examples
and
and
separated
the
b
d
y
is
\
with
@
diren
"
n
from
b
the
of
metho
This
d
overlo
ob
ee
ject
Section
jacobonleah
is
>
orted
>
y
f
Queries
reuben
Multi
simeon
Metho
levi
If
judah
query
issachar
tains
zebulun
m
g
alued
;
d
sonrachel
a
>
ariable
>
the
f
p
joseph
eac
benjamin
result
g
ject
;
this
sonzilpah
d
>
in
>
ob
f
base
gad
a
asher
ossible
g
for
;
v
sonbilhah
Giv
>
the
>
ject
f
describ
dan
in
naphtali
3.2,
g
the
].
of
(3.1)
yields
The
his
syn
wn
tax
?-
extends
>
straigh
X
tforw
er
ardly
query
to
?-
metho
>>
ds
Xacob
with
Note
more
v
than
in
one
query
parameter
y
If
b
w
b
e
to
additionally
ob
w
nev
an
to
t
of
to
jects
sp
the
ecify
o
the
e
order
do
in
not
whic
X
h
jacobsau
the
.
sons
case
of
a
Jacob
with
w
set
ere
gr
b
iderms
orn
the
w
p
e
ho
need
ev
t
it
w
only
o
hec
parameters
ed
whic
all
h
results
are
true
separated
the
b
onding
y
ject
commas
there
jacobonleah
y
>
e
reuben
result
sonleah
jects
>
the
simeon
With
sonleah
ob
>
base
levi
o
sonleah
e
>
the
judah
wing
sonbilhah
yield
>
answ
dan
true
sonbilhah
?-
>
>
naphtali
f
sonzilpah
esau
>
].
gad
isaacon
sonzilpah
>
>
jacob
asher
].
sonleah
isaacon
>
>
issachar
esau
sonleah
].
>
isaacon
zebulun
>
sonrachel
].
>
josephsingleton
the
sev
OBJECTS
Esau
AND
Fogic
THEIR
e
PR
ject
OPER
jacob
TIES
so
8
incomparable
If
order
w
des
e
an
w
denotes
an
b
t
ulti
to
singleton
kno
sp
w
an
if
,
a
the
set
the
of
e
ob
]
jects
of
is
eral
the
.
exact
is
result
f
of
isaacan
a
].
m
ob
ulti
multivalue
alued
omit
metho
of
d
R
applied
an
to
eral
a
sub
certain
y
ob
sup
ject
sp
w
of
e
chy
ha
directed
v
classes
e
analogy
to
do
use
jects
negation
Expressing
see
Instead
Example
ab
14.6.
collected
3.1.2
the
Class
a
Mem
sons
b
raham
ership
This
and
to
Sub
raham
class
>>
Relationship
con
Isatoms
the
state
e
that
our
an
d
ob
allo
ject
enclosing
b
expressions
elongs
one
to
class
a
iu
class
ermits
sub
ject
classtoms
of
express
that
the
y
sub
relationship
class
class
relationship
v
b
incomparable
et
Th
w
class
een
a
t
the
w
so
o
hier
classes
y
Class
as
mem
but
b
with
ership
its
and
that
the
HiLog
sub
class
class
not
relation
of
are
are
denoted
class
b
ab
y
ject
a
giving
single
atoms
colon
an
and
b
a
Fole
double
or
colon
wing
repsectiv
Isaac
ely
whose
.
and
In
Jacob
the
>
follo
>
wing
g
example
ma
the
split
st
eral
three
>
isatoms
>>
express
].
that
esau
Abraham
or
and
a
Isaac
metho
are
of
mem
can
b
in
ers
ecall
of
tics
the
not
class
F
man
it
,
ed
whereas
curly
Sarah
result
is
the
a
instance
mem
exactly
b
most
er
eci
of
(e.g.,
the
OL
class
]),
w
p
oman
that
.
ob
F
is
urthermore
instance
t
sev
w
classes
o
are
sub
b
classtoms
the
state
class
that
Analogously
b
a
oth
ma
classes
ha
man
e
and
eral
w
direct
oman
erclasses
are
us
sub
sub
classes
relationship
of
ecis
the
partial
class
on
p
set
erson
classes
:
that
abrahaman
class
isaacan
ar
sarahoman
ma
womanperson
b
manperson
considered
(3.3)
a
In
acyclic
isatoms
rexiv
and
graph
sub
the
classtoms
as
the
no
ob
Note
jects
in
and
to
the
KW
classes
a
are
name
also
es
denoted
denote
b
set
y
ob
id
that
terms
instances
b
that
ecause
3.2
classes
Information
are
out
ob
Ob
jects
Folecules
{
of
as
sev
w
individual
ell
information
as
out
metho
ob
ds
can
are
e
ob
in
jects
cules
Hence
F
classes
example
ma
follo
y
Folecule
ha
that
v
is
e
man
metho
father
ds
Abraham
deed
whose
on
are
them
and
and
isaacanather
ma
ab
y
son
b
>
e
jacobsau
instances
].
of
Folecule
other
y
classes
e
whic
in
h
sev
serv
Ftoms
e
isaacather
as
ab
a
isaacon
kind
f
of
g
metaclasses
isaacon
F
f
urthermore
g
v
F
ariables
Folecules
are
taining
p
m
ermitted
alued
at
d
all
set
p
result
ositions
jects
in
b
an
divided
isa
to
or
sets
sub
that
class
seman
atom
is
In
d
con
setalue
trast
).
to
or
other
sets
ob
is
ject
w
orien
to
ted
the
languages
braces
where
the
ev
set
ery
that
ob
three
ject
3
isis
but
manelieves
OBJECTS
etoms
AND
class
THEIR
follo
PR
inheritance
OPER
3
TIES
in
9
abrahamelieves
giv
they
en
though
in
ob
(3.4),
orted
(3.5)
signaturetom
and
p
(3.6)
,
are
datatom
equiv
e
alen
sarahelieves
t
ws
whic
b
h
a
means
es
that
b
they
>
yield
Fogic
the
out
same
for
ob
and
ject
ject
base
ery
isaacon
the
>
in
>
Giv
f
sub
jacobsau
from
g
the
].
isaacelieves
(3.4)
womanelieves
isaacon
(3.8)
>
ds
>
sub
f
passed
jacob
o
g
ononotonic
].
p
isaacon
e
>
us
>
explicitly
f
ahab
esau
information
g
p
].
ultiple
(3.5)
more
isaacon
11.
>
metho
>
classes
jacob
d
isaacon
yp
>
our
>
ev
esau
i
(3.6)
ject
3.3
instance
Beha
p
vioral
eliev
Inheritance
d
In
god
ob
this
ject
with
orien
relationships
ted
b
systems
(3.3)
an
deriv
instance
wing
esp
>
sub
>
class
>
ma
>
y
>
inherit
(3.8)
prop
inheritable
erties
inheritable
of
passed
its
but
class
nonnheritable
esp
instances
sup
example
erclass
erriding
W
d
e
Ev
distinguish
is
structur
he
al
b
inheritanc
go
e
Baal
,
metho
i
in
propagation
for
of
ahab
a
elieves
t
This
yp
v
e
the
restriction
.
for
en
a
is
metho
or
d
discussion
from
see
a
Signatures
sup
whic
erclass
are
to
of
its
particular
sub
a
classes
a
ee
es
Section
restrictions
3.4
in
and
ob
8.3),
base
and
ery
b
erson
ehavior
ev
al
ob
inheritanc
that
e
an
,
of
i
class
propagation
erson
of
b
results
es
of
go
a
personelieves
metho
>
d
(3.7)
application
en
from
inheritable
a
together
class
the
to
class
its
and
instances
mem
and
erships
sub
Example
classes
w
T
can
o
e
express
follo
b
information
eha
in
vioral
god
inheritance
in
in
god
Fogic
in
w
god
e
in
use
god
inheritable
in
metho
god
ds
Example
,
sho
indicated
that
b
metho
y
remain
a
when
sp
are
ecial
to
arro
classes
w
they
t
ecome
yp
when
e
to
\
The
*-
wing
>
demonstrates
"
v
for
of
inheritable
metho
functional
application
metho
inheritance
ds
en
and
Ahab
\
a
*-
erson
>
do
>
not
"
eliev
for
in
inheritable
d
m
in
ulti
Th
v
the
alued
d
metho
elieves
ds
is
If
deed
an
the
inheritable
ject
metho
:
d
erson
is
in
deed
baal
for
explicit
a
o
class
errides
this
from
metho
class
d
erson
application
In
and
ev
the
m
corresp
inheritance
onding
supp
result
F
is
a
propagated
detailed
to
ab
ev
inheritance
ery
Section
instance
3.4
and
Signatur
sub
dee
class
h
of
ds
that
applicable
class
instances
unless
certain
it
In
is
a
o
declares
v
metho
erridden
on
The
class
follo
giv
wing
t
inheritable
e
datatom
for
denotes
thatma
This
w
OBJECTS
ab
AND
as
THEIR
elong
PR
applied
OPER
signaturea
TIES
their
10
lo
parameters
father
and
y
results
atom
These
mem
restrictions
d
ma
of
y
en
b
F
e
functional
view
course
ed
the
as
class
t
erson
yping
the
constrain
not
ts
metho
Signature
without
Ftoms
p
together
ho
with
co
the
Ov
class
denoted
hierarc
diren
h
their
y
er
form
to
the
one
schema
in
of
>
an
b
Fogic
ob
database
of
As
an
in
v
datatoms
classes
the
sp
arro
allo
w
of
head
result
indicates
classes
whether
in
a
ma
signature
the
Ftom
ts
describ
the
es
>
a
e
functional
that
metho
ob
d
y
\
found
=
orts
>
means
"
same
or
applied
a
ds
m
v
ulti
or
alued
i
metho
their
d
metho
\
class
=
alued
>>
(3.1)
".
t
T
corresp
o
this
distinguish
>
signaturetoms
a
from
y
data
consists
Ftoms
express
the
ob
arro
metho
w
applied
b
of
o
erson
dy
to
consists
b
of
and
a
As
double
case
line
theses
instead
ed
of
p
a
signature
single
that
line
jects
Here
to
are
follo
some
b
examples
a
for
whic
signaturetoms
b
p
instances
ersonather
p
>
y
man
the
p
ership
ersonaughter
ob
>
elieves
w
More
oman
t
manonw
hec
oman
to
>
ery
man
in
The
base
st
ered
one
corresp
states
b
that
Section
the
Fogic
functional
v
metho
ds
d
metho
father
y
is
ject
deed
b
for
instances
mem
classes
b
y
ers
e
of
according
the
y
class
ulti
p
y
erson
um
and
parameters
the
y
corresp
example
onding
son
result
of
ob
is
ject
m
has
d
to
in
b
as
elong
d
to
o
the
(3.2).
class
signature
man
lik
.
oman
The
manonw
second
2
one
result
dees
ma
the
enclosed
m
theses
ulti
if
alued
just
metho
3
d
that
daughter
result
for
jects
mem
the
b
d
ers
if
of
to
the
instance
class
the
p
p
erson
ha
restricting
e
the
b
result
to
ob
oth
jects
man
to
p
the
.
class
a
w
ecial
oman
empt
.
paren
Finally
are
,
w
the
at
third
result
signaturetom
osition
allo
a
ws
atom
the
means
application
the
of
ob
the
are
m
restricted
ulti
certain
alued
The
metho
wing
d
dees
son
elieves
to
as
ob
functional
jects
d
b
h
elonging
y
to
e
the
to
class
of
man
class
with
erson
parameter
an
ob
requiremen
jects
for
that
class
are
b
mem
of
b
result
ers
jects
of
erson
the
in
class
()].
w
information
oman
out
.
yp
The
c
result
king
ob
w
jects
ensure
of
ev
suc
metho
h
application
metho
the
d
ject
applications
is
ha
v
v
b
e
a
to
onding
b
y
e
e
instances
in
of
12.
the
erloading
class
supp
man
o
.
erloading
By
metho
using
This
a
that
list
ds
of
b
result
the
classes
ob
enclosed
name
b
y
y
e
paren
to
theses
of
sev
t
eral
Metho
signaturetoms
ma
ma
ev
y
b
b
o
e
erloaded
com
to
bined
scalarit
in
unctional
an
m
Folecule
alued
This
arit
is
,
equiv
n
alen
b
t
of
to
or
the
inheritabilit
c
.
onjunction
or
of
the
the
d
atoms
applicable
the
instances
result
the
of
man
the
used
metho
a
d
ulti
is
metho
required
with
to
parameter
b
Example
e
and
in
a
al
metho
l
with
of
w
those
parameters
classes
Example
personather
The
>
onding
an
atoms
person
ok
(3.9)
e
personather
manonw
>
>
an
an
personather
omannteger
>
an
erson
Of
(3.10)
the
Both
of
expressions
signature
in
y
the
e
Examples
b
(3.9)
paren
and
as
(3.10)
ell
2
it
are
of
equiv
one
alen
ject
t
and

¡Sé el primero en escribir un comentario!

13/1000 caracteres como máximo.

Difunda esta publicación

También le puede gustar