tutorial

Publicado por

do266{292.incorpOLevVINGtheALGEBRAS:Theor.ANthatAtoTTEMPTbTOeDISCOoVERTheoreticalSEMANTICSonlywYURItheGUREVICHanEleoctricspalsEngineveringalgebrasandinComputer264{284.SciencandemDepthatartmenttheThevUniversityypicalofhMichiganpAfornneAsprbnor,onMIt48109-2122,olUSAcorrectness.Preface(hoThisintutorialhaiselsewhere.basedeanon43,lecture\CurrennotesG.fromorldtheconFreectallthe1990thecoursemaconcPrinciplesoofthingsProgrammingalgebras.LanguagesisaterationalthesUnivdetailed.ersitthinkyhoyfnotMicghigan.high-lev(Mylanguage.yeounghigh-levfriendlanguageQuisaniolvingdidenotdattendonetheprolectures.)nThethispresenotherEVtersionrealincorpevoratesexample)someecehangesFirstproofvc.okScience,edeb.btedyrendstheScience",necessitbySalomaa,ttic,ovuslighpdicationsdateonethehangebibliographofyened.time,ThebasicmainispartforofisthetpapSubsectionereiswithstillolvingtheinsame,misconceptionhothatwopevapproacer,iandnecessarilytheoexamplesSomeareeopleuncthathangedapproacevsuitedencomplexitthoughanalysismanesygivthingsahappoeneddineltheecicationmeanItimeeliev.iIanelparticular,ecicationwbasedeev(thealgebras;collectivsuccessiv[Gu4] ...
Publicado el : jueves, 22 de septiembre de 2011
Lectura(s) : 41
Número de páginas: 27
Ver más Ver menos

do
266{292.
incorp
OL
ev
VING
the
ALGEBRAS:
Theor.
AN
that
A
to
TTEMPT
b
TO
e
DISCO
o
VER
Theoretical
SEMANTICS
only

w
YURI
the
GUREVICH
an
Ele
o
ctric
sp
al
s
Engine
v
ering
algebras
and
in
Computer
264{284.
Scienc
and
e
m
Dep
that
artment
the
The
v
University
ypical
of
h
Michigan
p
A
for
nn
e
A
sp
rb
n
or,
on
MI
t
48109-2122,
ol
USA
correctness.
Preface
(ho
This
in
tutorial
ha
is
elsewhere.
based
ean
on
43,
lecture
\Curren
notes
G.
from
orld
the
con
F
reect
all
the
1990
the
course
mac
on
c
Principles
o
of
things
Programming
algebras.
Languages
is
at
erational
the
s
Univ
detailed.
ersit
think
y
h
o
y
f
not
Mic
g
higan.
high-lev
(My
language.
y
e
oung
high-lev
friend
language
Quisani
olving
did
e
not
d
attend
one
the
pro
lectures.)
n
The
this
presen
other
EV
t
ersion
real
incorp
ev
orates
example)
some
e
c
e
hanges
First
pro
of
v
c.
ok
Science,
ed
eb.
b
ted
y
rends
the
Science",
necessit
b
y
Salomaa,
t
tic,
o
v
u
sligh
p
dications
date
one
the
hange
bibliograph
of
y
ened
.
time,
The
basic
main
is
part
for
of
is
the
t
pap
Subsection
er
e
is
with
still
olving
the
in
same,
misconception
ho
that
w
op
ev
approac
er,
i
and
necessarily
the
o
examples
Some
are
eople
unc
that
hanged
approac
ev
suited
en
complexit
though
analysis
man
es
y
giv
things
a
happ
o
ened
d
in
el
the
ecication
mean
I
time
eliev
.
i
I
a
n
el
particular,
ecication
w
based
e
ev
(the
algebras;
collectiv
successiv
[Gu4].
renemen
e)
metho
ha
i
v
then
e
to
learned
to
ho
v
w
impleme
t
tation
o
But
build
and
ev
arious
olving
issues
algebras
w
b
o
y
orate
the
time
metho
to
d
olving
o
for
f
will
successiv
v
e
t
renemen
b
ts,
addressed
and

the
published
curren
Bulletin
in
Europ
2.7
Asso
olving
for
algebra
Computer
description
no.
of
F
the
1991,
C
Reprin
programming
in
language
found
in
in
[GH]
Computer
do
Eds.
esn't
Rozen
lo
erg
ok
A.
m
W
uc
Scien
h
1993,
lik
This
e
ersion
the
tains
strcpy
t
example
o
an
to
ymore.
the
No
and
w,
c
w
in
e
denition
understand
ealgebras
b
happ
etter
in
ho
mean
w
namely
t
the
o
EA
comp
hine
ose
deterministic;
ev
explanation
olving
the
algebras
hange
and
1
ho
pro
tv
ew
te
v
At
tTa
hand,
than
Another
ab
computation
y
mo
f
del
lev
Quisani:
W
Someb
algorithm
o
case,
d
of
y
really
told
v
me
EAs
that
in
y
the
ou
Ho
are
algorithm
doing
giv
seman
bac
tics
mac
these
random
da
xed
ys.
algorithms.
Author:
arbitrary
Someb
functions
o
for
d
the
y
y
w
e
as
hine
righ
incorp
t.
ed
Q:
hine
Sure,
b
someb
high
o
one
d
to
y
built
i
a
s
hines:
usually
mo
righ
[Sc
t.
A:
T
mo
ell
abstraction
me
lo
ab
algebra,
out
e
y
One
our
hierarc
seman
of
tics.
same
A:
y
The
abstraction
original
A
idea
algebras
w
and
as
tec
to
used
pro
hine
vide
h
op
impleme
erational
tec
seman
for
tics
orger
for
tailor
algorithms
lev
b
are
y
F
elab
e
orat-
that
ing
in
up
ou
on
dulo
what
steps.
ma
cation
y
op
b
there
e
ulate
called
uring
the
v-Usp
implicit
what
T
mac
uring's
h
thesis:
v
ev
mac
ery
h
algorithm
mac
is
has
sim
el
ulated
w
b
e
y
for
a
ev
n
the
appropriate
y
T
to
uring
lev
mac
W
hine
a
[Gu1].
than
T
olving
uring
arious
did
for
not
See
claim
example
this
will
explicitly;
v
his
els
the-
programming
sis
h
w
sp
as:
constructed
ev
B
ery
Rosenzw
computable
where
function
of
is
ts
computable
reconstruct
b
Abstract
y
virtual
some
del
T
most
uring
t
mac
tations
hine.
crucial
But
starting
his
abstract
informal
dev
pro
to
of
[Bo1{Bo3].
of
reason
the
EA
thesis
the
[T
of
u]
individual
giv
algorithms
es
themselv
the
example,
stronger
y
v
in
ersion.
el
In
ws,
the
ultiplyi
sense
matrices
of
A:
the
del
stronger
algorithm
thesis,
algorithms
T
erform
uring
y
mac
m
hines
b
giv
as
e
Q:
o
o
p
b
erational
2
seman
algorithms
tics
T
to
mac
algorithms.
Kolmogoro
Unfortunately
ensky
,
hines
this
storage
seman
di

¡Sé el primero en escribir un comentario!

13/1000 caracteres como máximo.

Difunda esta publicación

También le puede gustar